Some External Characterizations of SV-Rings and Hereditary Rings
نویسندگان
چکیده
In ring theory, the notion of annihilator is an important tool for studying the structures. Many characterizations and structure theorems can be derived by using this notion. On the other hand, certain classes of rings (e.g., Baer rings and Rickart rings) are defined by considering annihilators ideals. In the present work, we introduce a class of rings which is close to the class of Rickart rings. We then investigate endomorphism rings having this property. This will enable us to obtain characterizations of certain classes of rings, namely the SV-rings and the hereditary rings. We have divided this work into three sections. In the first we give some preliminary results and examples. In the second, we characterize SV-rings. The third section is devoted to hereditary rings.
منابع مشابه
On n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملFully primary modules and some variations
Let R be a commutative ring and M be an R-module. We say that M is fully primary, if every proper submodule of M is primary. In this paper, we state some characterizations of fully primary modules. We also give some characterizations of rings over which every module is fully primary, and of those rings over which there exists a faithful fully primary module. Furthermore, we will introduce some ...
متن کاملOn generalizations of semiperfect and perfect rings
We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel, that is, every simple right $R$-module has a flat $B$-cover. We give some properties of such rings along with examples. We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007